Perron-Frobenius Theorem and Invariant Sets in Linear Systems Dynamics

Mihaela-Hanako Matcovschi and Octavian Pastravanu
Department of Automatic Control and Applied Informatics
Technical University "Gh. Asachi" of Iasi
Blvd. Mangeron 53A, 700050 Iasi, Romania
Phone/Fax: +40-232-230751, E-mail: {mhanako, opastrav}@delta.ac.tuiasi.ro

Abstract - The paper explores the connections between the Perron-Frobenius (PF) theory and the flow-invariant sets with respect to the dynamics of linear systems. Our analysis includes both discrete- and continuous-time systems, and the results are separately formulated for linear dynamics generated by the following types of matrices: (i) (essentially) nonnegative and irreducible or (essentially) positive, (ii) (essentially) nonnegative and reducible. For both cases we show how the PF eigenvalue and right and left PF eigenvectors are related to invariant sets defined for any Hölder p-norm (1 ≤ p ≤ ∞).

I. INTRODUCTION

Some of the contributions brought by the mathematicians Oskar Perron (1880-1975) and Ferdinand Georg Frobenius (1849-1917) to the progress of linear algebra at the beginning of the previous century are nowadays known as the Perron-Frobenius (PF) theory (Theorems 8.2.2 and 8.4.4 in [1] – see the Appendix). This theory represents an important instrument for exploring the dynamics of positive systems, being used either for developing theoretical approaches [2]–[9], or for dealing with specific applications that arise in different areas of science and engineering [10], [11].

The paper [4] presents nice comments on the key role played by the PF theory in the qualitative analysis, as “providing information on the long term behavior of a homogeneous positive irreducible system”, in the sense that any trajectory evolves with a speed given by the PF eigenvalue and approaches the PF eigenvector (which belongs to the first orthant of the state space).

If we continue to use this intuitive style for exposition, then we may say that the current paper brings complementary information, by showing the utility of the PF Theorem in the characterization of both short and long term behavior. We prove the existence of different families of time-dependent sets, which are invariant with respect to the system motion, i.e. any trajectory initialized inside such a set will never leave it.

In a rigorous formulation, our objective is to connect the mathematical description of these families of invariant sets with the PF eigenvalue and the right and left PF eigenvectors. For asymptotically stable systems, the different families of invariant sets are contractive and their existence is mutually related to the existence of different types of Lyapunov functions. Although a great deal of research has been invested in the study of invariant sets of linear systems (as reflected by the survey work [12] and the papers cited therein), the link with the PF eigenstructure remained almost unexplored. A brief analysis appears in the more recent work [13] and it will be further commented in the main sections of our approach.

In our paper, we consider both discrete-time (abbreviated DT) and continuous-time (abbreviated CT) positive linear systems. The DT case is defined by:

\[x(t+1) = Ax(t), \quad x(t_0) = x_0, \quad t \in \mathbb{Z}_+, \quad t \geq t_0, \quad (1-DT) \]

and the CT case is defined by:

\[\dot{x}(t) = Ax(t), \quad x(t_0) = x_0, \quad t \in \mathbb{R}_+, \quad t \geq t_0, \quad (1-CT) \]

where \(A \in \mathbb{R}^{n \times n} \).

We develop connections between the PF Theorem and the dynamics of the systems (1-DT) and (1-CT) under the following assumptions on the matrix generating the dynamics. In section II, matrix \(A \) is considered positive or nonnegative and irreducible for system (1-DT) and essentially positive or essentially nonnegative and irreducible for system (1-CT). In section III, matrix \(A \) is considered nonnegative and reducible for system (1-DT) and essentially nonnegative and irreducible for system (1-CT).

Throughout the paper we use the following notations. For a vector \(x \in \mathbb{R}^n \): \(\| x \| \) is an arbitrary vector norm; \(\| x \|_p \) is the Hölder vector p-norm, \(1 \leq p \leq \infty \); \(| x | \) stands for the nonnegative vector defined by taking the absolute values of the elements of \(x \). If \(x, y \in \mathbb{R}^n \), then “\(x \preceq y \)”, “\(x \prec y \)” mean componentwise inequalities. For a matrix \(M \in \mathbb{R}^{m \times n} \): \(\| M \|_p \) is the matrix norm induced by the vector norm \(\| \bullet \|_p \); \(\mu_p(M) = \lim_{h \to 0} ((\| h+M \|_p - 1)h \) is a matrix measure ([14], pp. 29), based on the matrix norm \(\| \bullet \|_p \); \(\| M \| \) stands for the matrix defined by taking the absolute values of the entries of \(M \). If \(M, P \in \mathbb{R}^{m \times n} \), then “\(M \preceq P \)”, “\(M < P \)” mean componentwise inequalities. The spectrum of \(M \) is \(\sigma(M) = \{ z \in \mathbb{C} \mid \det(zI - M) = 0 \} \), and \(\lambda_i(M) \in \sigma(M), \quad i = 1, \ldots, n \), denote its eigenvalues.
II. DYNAMICS DEFINED BY (ESSENTIALLY) POSITIVE OR (ESSENTIALLY) NONNEGATIVE AND IRREDUCIBLE MATRICES

In this section we consider that the matrix A of system (1-DT) is either positive (all the entries are greater than 0) or nonnegative (all the entries are greater or equal to 0) and irreducible (the oriented graph associated with A is strongly connected - other equivalent characterizations are given by Theorem 6.2.24 in [1]). Similarly, the matrix A of system (1-CT) is either essentially positive (all the off-diagonal entries are greater than 0) or essentially nonnegative (all the off-diagonal entries are greater or equal to 0) and irreducible. First, we introduce the concept of PF-p-eigenpattern associated with the above types of matrices and then, we reveal the connections between this new concept and the dynamics of systems (1-DT) and (1-CT).

A. The Perron Frobenius p-Eigenvector

In the DT case, denote by $\lambda_{PF}(A)$ the PF eigenvalue of matrix A (i.e. it satisfies the condition $|\lambda_i(A)| \leq \lambda_{PF}(A)$, $i = 1, \ldots, n$), and by $r = [r_1, \ldots, r_n]^T \geq 0$, and $l = [l_1, \ldots, l_n]^T > 0$ the right and left PF eigenvectors (fulfilling the equalities $Ar = \lambda_{PF}(A)r$, $A^Tl = \lambda_{PF}(A)l$). For the moment, in order to ensure maximum of clarity, we refer to r and l as unique vectors, by choosing their elements such that $\sum_{i=1}^n r_i = 1$, $\sum_{i=1}^n l_i = 1$. However, we will show that the uniqueness can be omitted and the PF eigenvectors can be understood in their general sense of directions (not affected by positive constant multiplications).

In the CT case, we can still use the terminology of PF eigenvalue and eigenvectors, as motivated below. Let us pick a real s such that $sl + A$ is positive or nonnegative and denote the eigenvalues of A and $sl + A$ such that $\lambda_i(sl + A) = s + \lambda_i(A)$, $i = 1, \ldots, n$; define $\lambda_{PF}(A)$ so that

$$s + \lambda_{PF}(A) = \lambda_{PF}(sl + A) \geq \lambda_i(sl + A) \geq s + \text{Re}\{\lambda_i(A)\},$$

for all $i = 1, \ldots, n$. Thus, A has a real eigenvalue, denoted by $\lambda_{PF}(A)$, such that $\text{Re}\{\lambda_i(A)\} \leq \lambda_{PF}(A), i = 1, \ldots, n$. Moreover, once A is irreducible, $sl + A$ is also irreducible and its PF eigenvectors are eigenvectors of A. Consequently, there exist $r = [r_1, \ldots, r_n]^T > 0$ and $l = [l_1, \ldots, l_n]^T > 0$, with $\sum_{i=1}^n r_i = 1$, $\sum_{i=1}^n l_i = 1$, such that $Ar = \lambda_{PF}(A)r$ and, respectively, $A^Tl = \lambda_{PF}(A)l$. Relying on the above discussion, the meanings of the PF eigenvalue and eigenvectors in the DT and CT cases agree.

This fact allows the development of a unified approach in presenting our new results. Thus, regardless of the DT or CT nature of a positive linear system, for each $1 \leq p \leq \infty$ we can define a positive definite diagonal matrix $D_{PFp}(A)$, as follows. Consider $1 \leq q \leq \infty$ such that $1/p + 1/q = 1$, where the particular cases $p = 1$ and $p = \infty$ mean $1/p = 1$, $1/q = 0$, and $1/p = 0$, $1/q = 1$, respectively. By using the left and right PF eigenvectors, construct the matrix:

$$D_{PFp}(A) = \text{diag}\left[\frac{(l_1)^{1/p}}{(l_1)^{1/q}}, \ldots, \frac{(l_n)^{1/p}}{(l_n)^{1/q}}\right].$$

Definition 1. Let A be an (essentially) positive matrix or an (essentially) nonnegative and irreducible matrix. The pair $\lambda_{PF}(A), D_{PFp}(A)$ defines the PF p-eigepattern of A.

B. Properties of Discrete-Time Systems

In the current subsection, we study the connections between the PF p-eigepatterns of A and the properties of the dynamical system (1-DT).

Theorem 1. Let $1 \leq p \leq \infty$. Let matrix A be positive or nonnegative and irreducible. The following three statements are true. Moreover, these statements are equivalent.

(a) $\|D_{PFp}(A)A \|_{p} = \lambda_{PF}(A)$ (3-DT)

(b) Along any trajectory $x(t) = x(t; t_0, x_0)$ of system (1-DT), the motion fulfills the condition:

$$\|D_{PFp}(A)x(t+1)\|_{p} \leq \lambda_{PF}(A) \|D_{PFp}(A)x(t)\|_{p},$$

$\forall t \in \mathbb{Z}_+, t \geq t_0.$ (4-DT)

(c) The time-dependent sets

$$X^{p}_{PFp}(t; t_0) = \{x \in \mathbb{R}^n \ | \ \|D_{PFp}(A)x\|_{p} \leq \epsilon (\lambda_{PF}(A))^{t-t_0}\},$$

$t, t_0 \in \mathbb{Z}_+, t \geq t_0, \epsilon > 0,$ (5-DT)

are (positively) invariant with respect to (w.r.t.) the state-space trajectories of the DT system (1-DT).

Proof: From Theorem 1 in [15], we have that for any $1 \leq p \leq \infty$ the matrix $D_{PFp}(A)$ satisfies the equality (3-DT). Now we have to show that (a) \Leftrightarrow (b) \Leftrightarrow (c).

(a) \Rightarrow (b): For any trajectory $x(t) = x(t; t_0, x_0)$ of system (1-DT) and for any $t \in \mathbb{Z}_+, t \geq t_0$, we have

$$\|D_{PFp}(A)x(t+1)\|_{p} \leq \|D_{PFp}(A)A \|_{p} \|D_{PFp}(A)x(t)\|_{p} = \lambda_{PF}(A) \|D_{PFp}(A)x(t)\|_{p}.$$ (4-DT)

(b) \Rightarrow (a): For any trajectory $x(t) = x(t; t_0, x_0)$ of system (1-DT) and for any $t \in \mathbb{Z}_+, t \geq t_0$, we can write

$$\|D_{PFp}(A)A \|_{p} = \sup_{x(t_0)} \frac{\|D_{PFp}(A)A \|_{p} \|D_{PFp}(A)x(t)\|_{p}}{\|D_{PFp}(A)x(t)\|_{p}} \leq \lambda_{PF}(A).$$

On the other hand, for any positive definite diagonal matrix D, $\lambda_{PF}(A) = \lambda_{PF}(DA^{-1}) \leq \|DA^{-1}\|_{p}$. The two inequalities yield (3-DT).

(b) \Rightarrow (c): We construct a proof by contradiction, assuming that the time-dependent sets $X^{p}_{PFp}(t; t_0)$ defined by (5-DT) are not positively invariant w.r.t. the state-space trajectories of system (1-DT).
This means that there exist a trajectory \(\dot{x}(t) = \tilde{x}(t; t_0, x_0) \) of (1-DT), a constant \(\varepsilon > 0 \) and a moment \(t^* \geq t_0 \), such that \(\| D_{PPF}(A) \dot{x}(t^*) \|_p \leq \varepsilon (\lambda_{PF}(A))^{p(t^*-t_0)} \), whereas
\[
\| D_{PPF}(A) \dot{x}(t^*+1) \|_p > \varepsilon (\lambda_{PF}(A))^{p(t^*-t_0)}.
\]
Hence, we get \(\lambda_{PF}(A) \| D_{PPF}(A) \dot{x}(t^*) \|_p \leq \| D_{PPF}(A) \dot{x}(t^*+1) \|_p \), which contradicts (4-DT)
\[
(c) \Rightarrow (b): \text{Let } x(t) \text{ be a solution to (1-DT) and let } t \in \mathbb{Z}_+, \ t > t_0. \text{ Set } \varepsilon = \| D_{PPF}(A)x(t) \|_p. \text{ If } \varepsilon = 0, \text{ then } x(t) = 0, \text{ and hence } x(t+1) = 0. \text{ If } \varepsilon > 0, \text{ then by (5-DT),}
\]
\[
\| D_{PPF}(A) x(t+1; t, x(t)) \|_p \leq \| D_{PPF}(A) x(t) \|_p \lambda_{PF}(A),
\]
for all \(t \in \mathbb{Z}_+ \).

Corollary 1. Let \(1 \leq p \leq \infty \). Let matrix \(A \) be positive or nonnegative and irreducible. The following three statements are equivalent.

(a) System (1-DT) is stable.

(b) The function defined by
\[
V_{PF}(x) = \| D_{PF}(A)x \|_p,
\]
(6-DT) is a strong Lyapunov function for system (1-DT), with the decreasing rate \(\lambda_{PF}(A) \).

(c) The invariant sets defined by (5-DT) are contractive, with the coefficient \(\lambda_{PF}(A) \).

Proof: It results from Theorem 1, by taking into account the stability of the matrix \(A \).

Remark 1. Statement (b) of Corollary 1 shows that the PF eigenstructure of matrix \(A \) allows the construction of diagonal Lyapunov functions by using any Hölder norm. This represents a nice generalization of the classical diagonal-type Lyapunov function defined by \(V(x) = x^T \Delta x \), with \(\Delta \) positive definite and diagonal (e.g. [16]). Indeed, the Lyapunov function \(V_{PF_2}(x) = \| D_{PF_2}(A)x \|_2 \), defined by (6-DT) for \(p = \sqrt{2} \), is equivalent to \(V(x) = x^T \Delta x \), with \(\Delta = D_{PF_2}^2 \), since \(V(x) = V_{PF_2}(x) \) and, along each trajectory of system (1-DT) we have \(V(x(t+1)) - V(x(t)) = [V_{PF_2}(x(t+1)+V_{PF_2}(x(t+1)) - V_{PF_2}(x(t))], \ i.e. \)
\[
\text{sign}[V(x(t+1)) - V(x(t))] = \text{sign}[V_{PF_2}(x(t+1)) - V_{PF_2}(x(t))],
\]
\(\forall t \in \mathbb{Z}_+ \). Moreover, matrix \(\Delta = D_{PF_2}^2 \) is a solution to the Stein inequality \(A^T \Delta A - \Delta < 0 \), where \(\sim 0 \) means “negative definite”. Our generalization confirms that the diagonal Lyapunov functions and the contractive-type invariant sets are mutually related for any Hölder norm.

Properties of Continuous-Time Systems

In the current subsection, we study the connections between the PF \(p \)-eigenpatterns of \(A \) and the properties of the dynamical system (1-CT).

Theorem 2. Let \(1 \leq p \leq \infty \). Let matrix \(A \) be essentially nonnegative and irreducible or essentially positive. The following three statements are true. Moreover, these statements are equivalent.

(a) \(\mu_{p} \| D_{PF}(A) A D_{PF}^{-1}(A) \|_p = \lambda_{PF}(A). \) (3-CT)

(b) Along any trajectory \(x(t) = x(t; t_0, x_0) \) of system (1-CT), the motion fulfills the condition:
\[
D_{x}^T \| D_{PF}(A) x(t) \|_p \leq \lambda_{PF}(A) \| D_{PF}(A) x(t) \|_p,
\]
\(\forall t \in \mathbb{R}_+, t \geq t_0. \) (4-CT)

(c) The time-dependent sets
\[
X_{PF}^e(t; t_0) = \{ x \in \mathbb{R}^n \ | \ \| D_{PF}(A)x \|_p \leq \varepsilon e^{\lambda_{PF}(A)(t-t_0)} \}
\]
\(t, t_0 \in \mathbb{Z}_+, t \geq t_0, \varepsilon > 0. \) (5-CT) are (positively) invariant w.r.t. the state-space trajectories of the DT system (1-CT).

Proof: Let us pick an \(s > 0 \) such that \(sl + A \) is positive or nonnegative. Thus, by using Theorem 1, we get, for any \(1 \leq p \leq \infty \),
\[
\| D_{PPF}(A) (sl + A) D_{PF}^{-1}(A) \|_p = \| D_{PPF}(A) (sl + A) D_{PF}^{-1}(A) \|_p
\]
\(\Rightarrow \lambda_{PF}(A) = \| sl + D_{PF}(A) A D_{PF}^{-1}(A) \|_p, \)
which yields \(\lambda_{PF}(A) = \| sl + D_{PF}(A) A D_{PF}^{-1}(A) \|_p \). By taking \(s = 1 / h \), for \(h \downarrow 0 \), we obtain (3-CT). Now we have to show that (a) \(\Leftrightarrow \) (b) \(\Leftrightarrow \) (c).

(a) \(\Rightarrow \) (b): For any trajectory \(x(t) = x(t; t_0, x_0) \) of system (1-CT) and for any \(t \in \mathbb{R}_+, t \geq t_0 \), we can write
\[
D_{x}^T \| D_{PF}(A) x(t) \|_p = \lim_{h \to 0} \| D_{PF}(A) x(t+h) \|_p - \| D_{PF}(A) x(t) \|_p / h = \lim_{h \to 0} \| D_{PF}(A) x(t) \|_p / h \leq \lim_{h \to 0} \| D_{PF}(A) x(t) \|_p / h \leq \| D_{PF}(A) x(t) \|_p = \mu_{p} \| D_{PF}(A) A D_{PF}^{-1}(A) \|_p = \| D_{PF}(A)x(t) \|_p
\]
\(\Rightarrow \) (b): First we write (4-CT) in the equivalent form
\[
\| D_{PF}(A) x(t+\tau) \|_p \leq e^{\lambda_{PF}(A)\tau} \| D_{PF}(A)x(t_0) \|_p, \forall \tau, t_0 \in \mathbb{R}_+.
\]
(4-CT') from which we get
\[
\| D_{PF}(A) e^{\tau} D_{PF}^{-1}(A) \|_p = \sup_{x_0} \frac{\| (D_{PF}(A) e^{\tau} D_{PF}^{-1}(A) D_{PF}(A)x_0 \|_p}{\| D_{PF}(A)x(t_0) \|_p}
\]
\(\| D_{PF}(A) x(t_0 + \tau; t_0, x_0) \|_p \leq e^{\lambda_{PF}(A)\tau}, \)
\(\sup_{x_0} \frac{\| D_{PF}(A)x(t_0) \|_p}{\| D_{PF}(A)x(t_0) \|_p} \leq e^{\lambda_{PF}(A)\tau}. \)
This yields $\mu_1(A) A D_{PF}^{-1}(A) = \lim_{h \to 0} \| e^{\lambda(A) h} (A - I) \|_F / h = \lambda(A)$, which essentially means the equality (3-CT), since the measure of a matrix cannot be less than its PF eigenvalue (e.g. [14]).

(b) \Rightarrow (c): We construct a proof by contradiction, assuming that the time-dependent sets $X_{PF}^\ast(t;t_0)$ defined by (5-CT) are not positively invariant w.r.t. the state-space trajectories of system (1-CT). This means there exist a trajectory $\tilde{x}(t) = \tilde{x}(t; t_0, x_0)$ of (1-CT), a constant $\varepsilon > 0$, and two moments, $t^*, t^\ast > t_0$, such that $\| D_{PF}^{\ast}(A) \tilde{x}(t^*) \|_F \leq \varepsilon e^{\lambda(A)(t^*-t_0)}$ and $\| D_{PF}^{\ast}(A) \tilde{x}(t^\ast) \|_F > \varepsilon e^{\lambda(A)(t^\ast-t_0)}$. Hence, we get $e^{\lambda(A)(t^*-t)} D_{PF}^{\ast}(A) \tilde{x}(t^\ast) \|_F < \| D_{PF}^{\ast}(A) \tilde{x}(t^\ast) \|_F$, which contradicts (4-CT).

(c) \Rightarrow (b): By taking $\varepsilon = \| D_{PF}^{\ast} \|_F d_0$ in (5-CT), if $\varepsilon > 0$ we get (4-CT). If $\varepsilon = 0$, then $x_0 = 0$ and hence $x(t) = e^{\lambda(A)(t-t_0)} x_0 = 0$, for all $t \geq t_0$. \Box

Corollary 2. Let $1 \leq p \leq \infty$. Let matrix A be essentially nonnegative and irreducible or essentially positive. Then the three statements are equivalent.

(a) System (1-CT) is stable.

(b) The function defined by $V_{PF}(x) = \| D_{PF}^{\ast}(A) x \|_F$, (6-CT) is a strong Lyapunov function for system (1-CT), with the decreasing rate $\lambda_{PF}(A)$.

(c) The invariant sets defined by (5-CT) are contractive, with the coefficient $\lambda_{PF}(A)$.

Proof: It results from Theorem 2, by taking into account the stability of the matrix A. \Box

Remark 2. For CT systems, statement (b) of Corollary 2 brings the same generalization as Corollary 1 for DT systems with regard to the construction of diagonal Lyapunov functions by using any H"older norm. By considering the classical diagonal-type Lyapunov function $V(x) = x^T \Delta x$, with $\Delta = D_{PF}^2$, and $V_{PF}(x) = \| D_{PF}^{\ast}(A) x \|_2$, defined by (6-CT) for $p = 2$, it is obvious that along each trajectory of system (1-CT) we have $D_{V}^{\ast}(A) x = 2 D_{PF}^{\ast}(x) + 2 D_{PF}^{2}(x)$, i.e. sign $D_{V}^{\ast}(A) x = \text{sign} D_{PF}^{2}(A) x$, for all $x \in \mathbb{R}^d$. At the same time, the matrix $\Delta = D_{PF}^{2}(A)$ is a solution to the Lyapunov inequality $A^T \Delta + \Delta A < 0$, where "$< 0$" means "negative definite".

Remark 3. Statement (c) of Corollary 2 generalizes for arbitrary H"older p-norms the contractive sets discussed in ([13], Theorem 7.4) only for $p = 1$ and $p = \infty$.

D. Comments on the Perron-Frobenius p-Eigenpattern

The results formulated by the previous two subsections show that the development of our insight into the connections between the PF theory and the linear system dynamics relies on equalities (3-CT) and (3-CT). These equalities hold true if the diagonal matrix $D_{PF}^{\ast}(A)$ is multiplied by an arbitrary positive constant. This means that the construction of $D_{PF}^{\ast}(A)$ by procedure (2) does not require the normalization $\sum_{i=1}^n x_i^2 = 1$, $\sum_{i=1}^n y_i = 1$, of the PF right and left eigenvectors (which was introduced in the first subsection for ensuring the uniqueness of $D_{PF}^{\ast}(A)$ at that step of the exposition). As expected, the valuable information for our approach is the direction of the PF eigenvectors, since the invariant sets and Lyapunov functions are uniquely defined up to a scaling factor.

III. DYNAMICS DEFINED BY (ESSENTIALLY) NONNEGATIVE AND REDUCIBLE MATRICES

In both DT and CT cases, when matrix A is reducible, the right and left eigenvectors associated with the PF eigenvalue may contain 0 elements. Hence, the definition of the matrix $D_{PF}^{\ast}(A)$ by (2) does not hold any longer. However, we can still use the information given by the PF Theorem if, instead of A, we consider a slightly modified matrix:

$$A_\varepsilon = A + \varepsilon U, \ v > 0, \ U = [u_{ij}], \ u_{ij} = 1, i, j = 1, \ldots, n, \ (7)$$

where ε is small enough. The matrix A_ε is (essentially) positive and we can benefit from the results presented in the previous section. Thus the PF p-eigenpattern of A_ε is defined by the pair $\lambda_{PF}(A_\varepsilon)$ and $D_{PF}^{\ast}(A_\varepsilon)$.

A. Properties of Discrete-Time Systems

In the current subsection, we study the connections between the PF p-eigenpattern of A_ε and the properties of the dynamical system (1-DT).

Theorem 3. Let $1 \leq p \leq \infty$. Let A_ε be nonnegative and reducible. For any $\varepsilon > 0$, the following three statements are true. Moreover, these statements are equivalent.

(a) $\lambda_{PF}(A_\varepsilon) \leq \| D_{PF}^{\ast}(A_\varepsilon) A D_{PF}^{\ast}(A_\varepsilon) \|_p \leq \lambda_{PF}(A_\varepsilon) \cdot (8-\text{DT})$

(b) Along any trajectory $x(t) = x(t; t_0, x_0)$ of system (1-DT), the motion fulfills the condition:

$$\| D_{PF}^{\ast}(A_\varepsilon)(x(t+1)) \|_p \leq \lambda_{PF}(A_\varepsilon) \| D_{PF}^{\ast}(A_\varepsilon) x(t) \|_p, \forall t \in \mathbb{Z}, t \geq t_0. \ (9-\text{DT})$$

(c) The time-dependent sets $X_{PF}^{\ast}(t; t_0) \equiv \{ x \in \mathbb{R}^d | \| D_{PF}^{\ast}(A_\varepsilon) x \|_p \leq \varepsilon (\lambda_{PF}(A_\varepsilon))^{(t-t_0)} \}$, $t, t_0 \in \mathbb{Z}$, $\varepsilon > 0$, (10-\text{DT})

are (positively) invariant w.r.t. the state-space trajectories of system (1-DT).
Proof. Let us show that (8-DT) is true for the considered hypothesis. We first prove that
\[\|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \leq \|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p. \]
We can write the componentwise inequalities
\[\|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \leq \|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \]
\[\|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \leq \|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p, \]
for any \(y \in \mathbb{R}^n \).

From Theorem 5.5.10 in [1], the monotonicity of the vector \(p \)-norms implies
\[\|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \leq \|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p, \]
\[\|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \leq \|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p, \]
yielding
\[\|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \leq \|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p. \]
Consequently,
\[\|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p = \max_{\|y\|_p = 1} \|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p. \]

Now, from the matrix norm properties we have
\[\lambda_{PF}(A) \leq \|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \]
and, on the other hand, from Theorem 1 in [15] we can write
\[\|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p = \lambda_{PF}(A). \]
Thus (8-DT) is proved. Along the lines of the proof of Theorem 1, we can show that (a) \(\Leftrightarrow \) (b) \(\Leftrightarrow \) (c).

Corollary 3. Let matrix \(A \) be nonnegative and reducible. The following three statements are equivalent.
(a) System (1-DT) is stable.
(b) For any \(1 \leq p \leq \infty \), there exists \(c > 0 \) such that the function defined by
\[V_{PF}(x) = \|D_{PF}(A)x\|_p, \]

is a strong Lyapunov function for system (1-DT), with the decreasing rate as close to \(\lambda_{PF}(A) \) as we want.
(c) For any \(1 \leq p \leq \infty \), there exists \(c > 0 \) such that the invariant sets defined by (10-DT) are contractive, with the coefficient as close to \(\lambda_{PF}(A) \) as we want.

Proof: It results from Theorem 3, by taking into account the Schur stability of \(A \) and the continuity of \(\lambda_{PF}(A) \) as a function of \(c > 0 \), with \(\lambda_{PF}(A) \|_{c=0} = \lambda_{PF}(A) \). \(\Box \)

B. Properties of Continuous-Time Systems

In the current subsection, we study the connections between the PF \(p \)-eigenpattern of \(A \) and the properties of the dynamical system (1-CT).

Theorem 4. Let \(1 \leq p \leq \infty \). Let matrix \(A \) be essentially nonnegative and reducible. For any \(c > 0 \), the following three statements are true. Moreover, these statements are equivalent.
(a) \(\lambda_{PF}(A) \leq \|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \leq \lambda_{PF}(A). \)
(b) Along any trajectory \(x(t) = x(t; t_0, x_0) \) of system (1-CT), the motion fulfills the condition:
\[D_{PF}^t \|D_{PF}(A)x(t)\|_p \leq \lambda_{PF}(A) \|D_{PF}(A)x(t)\|_p, \]
\[\forall t \in \mathbb{R}_+, t \geq t_0, \]
(b) for any \(\epsilon > 0 \).
(c) The time-dependent sets
\[X_{PF}^\epsilon(t; t_0) = \{ x \in \mathbb{R}^n \mid \|D_{PF}(A)x\|_p \leq \epsilon \lambda_{PF}(A)(t-t_0) \}, \]
\[t, t_0 \in \mathbb{R}_+, t \geq t_0, \epsilon > 0, \]
are (positively) invariant w.r.t. the state-space trajectories of system (1-CT).

Proof. Let us show that (8-CT) is true for the considered hypothesis. We first prove that
\[\mu\|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \leq \mu\|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p. \]
For small \(h > 0 \) we can write the componentwise inequalities
\[0 \leq I + h D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A) \]
\[\leq I + h D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A), \]
that implies
\[\|I + h D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \leq \|I + h D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \]
\[\|I + h D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p, \]
according to the first part of the proof of Theorem 3. Hence, we get the inequality formulated above, which, together with
\[\lambda_{PF}(A) \leq \|D_{PF}(A) \cdot A \cdot D_{PF}^{-1}(A)\|_p \]
\[= \lambda_{PF}(A), \]
show that (8-CT) is true. Along the lines of the proof of Theorem 2, we can show that (a) \(\Leftrightarrow \) (b) \(\Leftrightarrow \) (c).

Corollary 4. Let matrix \(A \) be essentially nonnegative and reducible. The following three statements are equivalent.
(a) System (1-CT) is stable.
(b) For any \(1 \leq p \leq \infty \), there exists \(c > 0 \) such that the function defined by
\[V_{PF}(x) = \|D_{PF}(A)x\|_p, \]

is a strong Lyapunov function for system (1-CT), with the decreasing rate as close to \(\lambda_{PF}(A) \) as we want.
(c) For any \(1 \leq p \leq \infty \), there exists \(c > 0 \) such that the invariant sets defined by (10-CT) are contractive, with the coefficient as close to \(\lambda_{PF}(A) \) as we want.

Proof: It results from Theorem 4, by taking into account the Hurwitz stability of \(A \) and the continuity of \(\lambda_{PF}(A) \) as a function of \(c > 0 \), satisfying \(\lambda_{PF}(A) \|_{c=0} = \lambda_{PF}(A) \). \(\Box \)

Conclusions

Our paper reveals important links between the PF eigenstructure and the invariant sets with respect to linear
system dynamics. We prove that, for any $1 \leq p \leq \infty$, the concept of PF p-eigenpattern (which has a purely algebraic nature) induces a family of flow-invariant sets defined by the Hölder vector p-norm. Thus, our results bring a substantial generalization of some properties known in the dynamics of positive linear systems. The analysis has been developed at two levels of complexity that cover types of linear dynamics generated by different classes of matrices.

REFERENCES

APPENDIX

A. Perron-Frobenius Theorem for positive matrices

Let $A=[a_{ij}]$ be a real $n \times n$ matrix with positive entries $a_{ij} > 0$, $i, j = 1, \ldots, n$. Then the following statements hold:

1. there is a positive real eigenvalue $\lambda_{PF}(A)$ of A such that any other eigenvalue λ satisfies $|\lambda| < \lambda_{PF}(A)$. (This property may also be stated more concisely by saying that the spectral radius of A is an eigenvalue.)

2. the eigenvalue $\lambda_{PF}(A)$ is simple: $\lambda_{PF}(A)$ is a simple root of the characteristic polynomial of A. In particular, both the right and left eigenspace associated to $\lambda_{PF}(A)$ are 1-dimensional.

3. there is a left and, respectively, a right eigenvector associated with $\lambda_{PF}(A)$ having positive entries. This means that there exist

$$r = [r_1 \ldots r_n]^T > 0$$

and

$$l = [l_1 \ldots l_n]^T > 0$$

such that $Ar = \lambda_{PF}(A)r$ and $A^Tl = \lambda_{PF}(A)l$.

4. No other eigenvalue has a positive eigenvector.

5. there exists the eigenvalue estimate

$$\min \sum_i a_{ij} \leq \lambda_{PF}(A) \leq \max \sum_i a_{ij}.$$

6. The spectral radius is a strictly increasing function of the matrix entries.

The Perron–Frobenius theorem can be further generalized to the class of block-indecomposable (also called “irreducible”) nonnegative matrices. In particular it also holds if some positive power $B = A^k$, $k > 0$ of the nonnegative matrix A has positive entries (matrix A is called “regular” or “primitive”).

B. Perron-Frobenius Theorem for nonnegative matrices

Let $A=[a_{ij}]$ be a real $n \times n$ matrix with nonnegative entries $a_{ij} \geq 0$, $i, j = 1, \ldots, n$. Then the following statements hold:

1. there is a real eigenvalue $\lambda_{PF}(A)$ of A such that any other eigenvalue λ satisfies $|\lambda| < \lambda_{PF}(A)$. (This property may also be stated more concisely by saying that the spectral radius of A is an eigenvalue.)

2. there is a left and, respectively, a right eigenvector associated with $\lambda_{PF}(A)$ having nonnegative entries. This means that there exist

$$r = [r_1 \ldots r_n]^T \geq 0$$

and

$$l = [l_1 \ldots l_n]^T \geq 0$$

such that $Ar = \lambda_{PF}(A)r$ and $A^Tl = \lambda_{PF}(A)l$.

3. there exists the eigenvalue estimate

$$\min_i \sum_j a_{ij} \leq \lambda_{PF}(A) \leq \max_i \sum_j a_{ij}.$$